radar

ONE Sentinel

shield

CVE Tracker

10,250 total CVEs

Live vulnerability feed from the National Vulnerability Database

6.5

Use of insufficiently random values in Auracast prior to SMR Mar-2025 Release 1 allows adjacent attackers to access Auracast broadcasting.

7.3

Improper access control in SecSettingsIntelligence prior to SMR Mar-2025 Release 1 allows local attackers to launch privileged activities. User interaction is required for triggering this vulnerability.

6.3

A vulnerability classified as critical has been found in hzmanyun Education and Training System 2.1.3. This affects the function scorm of the file UploadImageController.java. The manipulation of the argument param leads to command injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.

6.3

A vulnerability was found in hzmanyun Education and Training System 2.1. It has been rated as critical. Affected by this issue is the function exportPDF of the file /user/exportPDF. The manipulation of the argument id leads to command injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.

7.8

An Uncontrolled Search Path Element vulnerability exists which could allow a malicious actor to perform DLL hijacking and execute arbitrary code with escalated privileges.

7.8

During an annual penetration test conducted on behalf of Axis Communication, Truesec discovered a flaw in the VAPIX Device Configuration framework that could lead to an incorrect user privilege level in the VAPIX service account D-Bus API.

8.5

During an annual penetration test conducted on behalf of Axis Communication, Truesec discovered a flaw in the ACAP Application framework that allowed applications to access restricted D-Bus methods within the framework. Axis has released patched AXIS OS versions for the highlighted flaw. Please refer to the Axis security advisory for more information and solution.

3.5

Girishunawane, member of the AXIS OS Bug Bounty Program, has found that the VAPIX API dynamicoverlay.cgi did not have a sufficient input validation allowing for a possible command injection leading to being able to transfer files to the Axis device with the purpose to exhaust system resources. Axis has released patched AXIS OS versions for the highlighted flaw. Please refer to the Axis security advisory for more information and solution.

8.7

A SQL injection vulnerability in ArcGIS Server allows an EDIT operation to modify column properties in a manner that could lead to SQL injection when performed by a remote authenticated user requiring elevated, non‑administrative privileges. Exploitation is restricted to users with advanced application‑specific permissions, indicating high privileges are required. Successful exploitation would have a high impact on integrity and confidentiality, with no impact on availability.

8.5

There is an improper access control issue in ArcGIS Server versions 11.3 and below on Windows and Linux which, under unique circumstances, could allow a remote, low‑privileged authenticated attacker to access secure services published to a standalone (unfederated) ArcGIS Server instance. Successful exploitation results in unauthorized access to protected services outside the attacker’s originally assigned authorization boundary, constituting a scope change. If exploited, this issue would have a high impact on confidentiality, a low impact on integrity, and no impact on the availability of the software.

7.8

When reading data from a hfs filesystem, grub's hfs filesystem module uses user-controlled parameters from the filesystem metadata to calculate the internal buffers size, however it misses to properly check for integer overflows. A maliciouly crafted filesystem may lead some of those buffer size calculation to overflow, causing it to perform a grub_malloc() operation with a smaller size than expected. As a result the hfsplus_open_compressed_real() function will write past of the internal buffer length. This flaw may be leveraged to corrupt grub's internal critical data and may result in arbitrary code execution by-passing secure boot protections.

7.8

When reading data from disk, the grub's UDF filesystem module utilizes the user controlled data length metadata to allocate its internal buffers. In certain scenarios, while iterating through disk sectors, it assumes the read size from the disk is always smaller than the allocated buffer size which is not guaranteed. A crafted filesystem image may lead to a heap-based buffer overflow resulting in critical data to be corrupted, resulting in the risk of arbitrary code execution by-passing secure boot protections.

7.5

In Modem, there is a possible system crash due to a missing bounds check. This could lead to remote denial of service, if a UE has connected to a rogue base station controlled by the attacker, with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: MOLY00791311 / MOLY01067019; Issue ID: MSV-2721.

5.4

A stored cross-site scripting (XSS) vulnerability in Serosoft Solutions Pvt Ltd Academia Student Information System (SIS) EagleR v1.0.118 allows attackers to execute arbitrary web scripts or HTML via injecting a crafted payload into the User ID parameter at /rest/staffResource/update.

9.1

Incorrect access control in the component /rest/staffResource/create of Serosoft Solutions Pvt Ltd Academia Student Information System (SIS) EagleR v1.0.118 allows create and modify user accounts, including an Administrator account.

9.1

Brocade ASCG before 3.2.0 Web Interface is not enforcing HSTS, as defined by RFC 6797. HSTS is an optional response header that can be configured on the server to instruct the browser to only communicate via HTTPS. The lack of HSTS allows downgrade attacks, SSL-stripping man-in-the-middle attacks, and weakens cookie-hijacking protections.

4.7

In the Linux kernel, the following vulnerability has been resolved: Input: synaptics - fix crash when enabling pass-through port When enabling a pass-through port an interrupt might come before psmouse driver binds to the pass-through port. However synaptics sub-driver tries to access psmouse instance presumably associated with the pass-through port to figure out if only 1 byte of response or entire protocol packet needs to be forwarded to the pass-through port and may crash if psmouse instance has not been attached to the port yet. Fix the crash by introducing open() and close() methods for the port and check if the port is open before trying to access psmouse instance. Because psmouse calls serio_open() only after attaching psmouse instance to serio port instance this prevents the potential crash.

5.5

In the Linux kernel, the following vulnerability has been resolved: ptr_ring: do not block hard interrupts in ptr_ring_resize_multiple() Jakub added a lockdep_assert_no_hardirq() check in __page_pool_put_page() to increase test coverage. syzbot found a splat caused by hard irq blocking in ptr_ring_resize_multiple() [1] As current users of ptr_ring_resize_multiple() do not require hard irqs being masked, replace it to only block BH. Rename helpers to better reflect they are safe against BH only. - ptr_ring_resize_multiple() to ptr_ring_resize_multiple_bh() - skb_array_resize_multiple() to skb_array_resize_multiple_bh() [1] WARNING: CPU: 1 PID: 9150 at net/core/page_pool.c:709 __page_pool_put_page net/core/page_pool.c:709 [inline] WARNING: CPU: 1 PID: 9150 at net/core/page_pool.c:709 page_pool_put_unrefed_netmem+0x157/0xa40 net/core/page_pool.c:780 Modules linked in: CPU: 1 UID: 0 PID: 9150 Comm: syz.1.1052 Not tainted 6.11.0-rc3-syzkaller-00202-gf8669d7b5f5d #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 RIP: 0010:__page_pool_put_page net/core/page_pool.c:709 [inline] RIP: 0010:page_pool_put_unrefed_netmem+0x157/0xa40 net/core/page_pool.c:780 Code: 74 0e e8 7c aa fb f7 eb 43 e8 75 aa fb f7 eb 3c 65 8b 1d 38 a8 6a 76 31 ff 89 de e8 a3 ae fb f7 85 db 74 0b e8 5a aa fb f7 90 <0f> 0b 90 eb 1d 65 8b 1d 15 a8 6a 76 31 ff 89 de e8 84 ae fb f7 85 RSP: 0018:ffffc9000bda6b58 EFLAGS: 00010083 RAX: ffffffff8997e523 RBX: 0000000000000000 RCX: 0000000000040000 RDX: ffffc9000fbd0000 RSI: 0000000000001842 RDI: 0000000000001843 RBP: 0000000000000000 R08: ffffffff8997df2c R09: 1ffffd40003a000d R10: dffffc0000000000 R11: fffff940003a000e R12: ffffea0001d00040 R13: ffff88802e8a4000 R14: dffffc0000000000 R15: 00000000ffffffff FS: 00007fb7aaf716c0(0000) GS:ffff8880b9300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa15a0d4b72 CR3: 00000000561b0000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tun_ptr_free drivers/net/tun.c:617 [inline] __ptr_ring_swap_queue include/linux/ptr_ring.h:571 [inline] ptr_ring_resize_multiple_noprof include/linux/ptr_ring.h:643 [inline] tun_queue_resize drivers/net/tun.c:3694 [inline] tun_device_event+0xaaf/0x1080 drivers/net/tun.c:3714 notifier_call_chain+0x19f/0x3e0 kernel/notifier.c:93 call_netdevice_notifiers_extack net/core/dev.c:2032 [inline] call_netdevice_notifiers net/core/dev.c:2046 [inline] dev_change_tx_queue_len+0x158/0x2a0 net/core/dev.c:9024 do_setlink+0xff6/0x41f0 net/core/rtnetlink.c:2923 rtnl_setlink+0x40d/0x5a0 net/core/rtnetlink.c:3201 rtnetlink_rcv_msg+0x73f/0xcf0 net/core/rtnetlink.c:6647 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2550

7.1

In the Linux kernel, the following vulnerability has been resolved: xfrm: state: fix out-of-bounds read during lookup lookup and resize can run in parallel. The xfrm_state_hash_generation seqlock ensures a retry, but the hash functions can observe a hmask value that is too large for the new hlist array. rehash does: rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..] net->xfrm.state_hmask = nhashmask; While state lookup does: h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { This is only safe in case the update to state_bydst is larger than net->xfrm.xfrm_state_hmask (or if the lookup function gets serialized via state spinlock again). Fix this by prefetching state_hmask and the associated pointers. The xfrm_state_hash_generation seqlock retry will ensure that the pointer and the hmask will be consistent. The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side, add lockdep assertions to document that they are only safe for insert side. xfrm_state_lookup_byaddr() uses the spinlock rather than RCU. AFAICS this is an oversight from back when state lookup was converted to RCU, this lock should be replaced with RCU in a future patch.

6.1

The CalendApp WordPress plugin through 1.1 does not sanitise and escape a parameter before outputting it back in the page, leading to a Reflected Cross-Site Scripting which could be used against high privilege users such as admin.

7.8

In the Linux kernel, the following vulnerability has been resolved: bus: fsl-mc-bus: fix KASAN use-after-free in fsl_mc_bus_remove() In fsl_mc_bus_remove(), mc->root_mc_bus_dev->mc_io is passed to fsl_destroy_mc_io(). However, mc->root_mc_bus_dev is already freed in fsl_mc_device_remove(). Then reference to mc->root_mc_bus_dev->mc_io triggers KASAN use-after-free. To avoid the use-after-free, keep the reference to mc->root_mc_bus_dev->mc_io in a local variable and pass to fsl_destroy_mc_io(). This patch needs rework to apply to kernels older than v5.15.

7.1

In the Linux kernel, the following vulnerability has been resolved: virtio_net: fix xdp_rxq_info bug after suspend/resume The following sequence currently causes a driver bug warning when using virtio_net: # ip link set eth0 up # echo mem > /sys/power/state (or e.g. # rtcwake -s 10 -m mem) <resume> # ip link set eth0 down Missing register, driver bug WARNING: CPU: 0 PID: 375 at net/core/xdp.c:138 xdp_rxq_info_unreg+0x58/0x60 Call trace: xdp_rxq_info_unreg+0x58/0x60 virtnet_close+0x58/0xac __dev_close_many+0xac/0x140 __dev_change_flags+0xd8/0x210 dev_change_flags+0x24/0x64 do_setlink+0x230/0xdd0 ... This happens because virtnet_freeze() frees the receive_queue completely (including struct xdp_rxq_info) but does not call xdp_rxq_info_unreg(). Similarly, virtnet_restore() sets up the receive_queue again but does not call xdp_rxq_info_reg(). Actually, parts of virtnet_freeze_down() and virtnet_restore_up() are almost identical to virtnet_close() and virtnet_open(): only the calls to xdp_rxq_info_(un)reg() are missing. This means that we can fix this easily and avoid such problems in the future by just calling virtnet_close()/open() from the freeze/restore handlers. Aside from adding the missing xdp_rxq_info calls the only difference is that the refill work is only cancelled if netif_running(). However, this should not make any functional difference since the refill work should only be active if the network interface is actually up.

7.1

In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak For some sev ioctl interfaces, the length parameter that is passed maybe less than or equal to SEV_FW_BLOB_MAX_SIZE, but larger than the data that PSP firmware returns. In this case, kmalloc will allocate memory that is the size of the input rather than the size of the data. Since PSP firmware doesn't fully overwrite the allocated buffer, these sev ioctl interface may return uninitialized kernel slab memory.

7.1

In the Linux kernel, the following vulnerability has been resolved: media: i2c: max9286: fix kernel oops when removing module When removing the max9286 module we get a kernel oops: Unable to handle kernel paging request at virtual address 000000aa00000094 Mem abort info: ESR = 0x96000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000000880d85000 [000000aa00000094] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Modules linked in: fsl_jr_uio caam_jr rng_core libdes caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine max9271 authenc crct10dif_ce mxc_jpeg_encdec CPU: 2 PID: 713 Comm: rmmod Tainted: G C 5.15.5-00057-gaebcd29c8ed7-dirty #5 Hardware name: Freescale i.MX8QXP MEK (DT) pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : i2c_mux_del_adapters+0x24/0xf0 lr : max9286_remove+0x28/0xd0 [max9286] sp : ffff800013a9bbf0 x29: ffff800013a9bbf0 x28: ffff00080b6da940 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 x23: ffff000801a5b970 x22: ffff0008048b0890 x21: ffff800009297000 x20: ffff0008048b0f70 x19: 000000aa00000064 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000014 x13: 0000000000000000 x12: ffff000802da49e8 x11: ffff000802051918 x10: ffff000802da4920 x9 : ffff000800030098 x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d x5 : 8080808000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffffffffffffffff x1 : ffff00080b6da940 x0 : 0000000000000000 Call trace: i2c_mux_del_adapters+0x24/0xf0 max9286_remove+0x28/0xd0 [max9286] i2c_device_remove+0x40/0x110 __device_release_driver+0x188/0x234 driver_detach+0xc4/0x150 bus_remove_driver+0x60/0xe0 driver_unregister+0x34/0x64 i2c_del_driver+0x58/0xa0 max9286_i2c_driver_exit+0x1c/0x490 [max9286] __arm64_sys_delete_module+0x194/0x260 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xd4/0xfc do_el0_svc+0x2c/0x94 el0_svc+0x28/0x80 el0t_64_sync_handler+0xa8/0x130 el0t_64_sync+0x1a0/0x1a4 The Oops happens because the I2C client data does not point to max9286_priv anymore but to v4l2_subdev. The change happened in max9286_init() which calls v4l2_i2c_subdev_init() later on... Besides fixing the max9286_remove() function, remove the call to i2c_set_clientdata() in max9286_probe(), to avoid confusion, and make the necessary changes to max9286_init() so that it doesn't have to use i2c_get_clientdata() in order to fetch the pointer to priv.

7.8

In the Linux kernel, the following vulnerability has been resolved: blk-throttle: Set BIO_THROTTLED when bio has been throttled 1.In current process, all bio will set the BIO_THROTTLED flag after __blk_throtl_bio(). 2.If bio needs to be throttled, it will start the timer and stop submit bio directly. Bio will submit in blk_throtl_dispatch_work_fn() when the timer expires.But in the current process, if bio is throttled. The BIO_THROTTLED will be set to bio after timer start. If the bio has been completed, it may cause use-after-free blow. BUG: KASAN: use-after-free in blk_throtl_bio+0x12f0/0x2c70 Read of size 2 at addr ffff88801b8902d4 by task fio/26380 dump_stack+0x9b/0xce print_address_description.constprop.6+0x3e/0x60 kasan_report.cold.9+0x22/0x3a blk_throtl_bio+0x12f0/0x2c70 submit_bio_checks+0x701/0x1550 submit_bio_noacct+0x83/0xc80 submit_bio+0xa7/0x330 mpage_readahead+0x380/0x500 read_pages+0x1c1/0xbf0 page_cache_ra_unbounded+0x471/0x6f0 do_page_cache_ra+0xda/0x110 ondemand_readahead+0x442/0xae0 page_cache_async_ra+0x210/0x300 generic_file_buffered_read+0x4d9/0x2130 generic_file_read_iter+0x315/0x490 blkdev_read_iter+0x113/0x1b0 aio_read+0x2ad/0x450 io_submit_one+0xc8e/0x1d60 __se_sys_io_submit+0x125/0x350 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Allocated by task 26380: kasan_save_stack+0x19/0x40 __kasan_kmalloc.constprop.2+0xc1/0xd0 kmem_cache_alloc+0x146/0x440 mempool_alloc+0x125/0x2f0 bio_alloc_bioset+0x353/0x590 mpage_alloc+0x3b/0x240 do_mpage_readpage+0xddf/0x1ef0 mpage_readahead+0x264/0x500 read_pages+0x1c1/0xbf0 page_cache_ra_unbounded+0x471/0x6f0 do_page_cache_ra+0xda/0x110 ondemand_readahead+0x442/0xae0 page_cache_async_ra+0x210/0x300 generic_file_buffered_read+0x4d9/0x2130 generic_file_read_iter+0x315/0x490 blkdev_read_iter+0x113/0x1b0 aio_read+0x2ad/0x450 io_submit_one+0xc8e/0x1d60 __se_sys_io_submit+0x125/0x350 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 0: kasan_save_stack+0x19/0x40 kasan_set_track+0x1c/0x30 kasan_set_free_info+0x1b/0x30 __kasan_slab_free+0x111/0x160 kmem_cache_free+0x94/0x460 mempool_free+0xd6/0x320 bio_free+0xe0/0x130 bio_put+0xab/0xe0 bio_endio+0x3a6/0x5d0 blk_update_request+0x590/0x1370 scsi_end_request+0x7d/0x400 scsi_io_completion+0x1aa/0xe50 scsi_softirq_done+0x11b/0x240 blk_mq_complete_request+0xd4/0x120 scsi_mq_done+0xf0/0x200 virtscsi_vq_done+0xbc/0x150 vring_interrupt+0x179/0x390 __handle_irq_event_percpu+0xf7/0x490 handle_irq_event_percpu+0x7b/0x160 handle_irq_event+0xcc/0x170 handle_edge_irq+0x215/0xb20 common_interrupt+0x60/0x120 asm_common_interrupt+0x1e/0x40 Fix this by move BIO_THROTTLED set into the queue_lock.

Showing 9476-9500 of 10,250 CVEs