radar

ONE Sentinel

shield

CVE Tracker

10,360 total CVEs

Live vulnerability feed from the National Vulnerability Database

7.5

A SQL injection vulnerability exists in Weaver e-cology 8.0 via the getdata.jsp endpoint. The application directly passes unsanitized user input from the sql parameter into a database query within the getSelectAllIds(sql, type) method, reachable through the cmd=getSelectAllId workflow in the AjaxManager. This allows unauthenticated attackers to execute arbitrary SQL queries, potentially exposing sensitive data such as administrator password hashes. Exploitation evidence was observed by the Shadowserver Foundation on 2025-02-05 UTC.

4.8

The Phoenix Code's configuration on macOS, specifically the presence of entitlements: "com.apple.security.cs.allow-dyld-environment-variables" and "com.apple.security.cs.disable-library-validation" allows for Dynamic Library (Dylib) injection. A local attacker with unprivileged access can use environment variables like DYLD_INSERT_LIBRARIES to successfully inject code in application's context and bypass Transparency, Consent, and Control (TCC). Acquired resource access is limited to previously granted permissions by the user. Access to other resources beyond granted-permissions requires user interaction with a system prompt asking for permission. This issue was fixed in commit 0c75fb57f89d0b7d9b180026bc2624b7dcf807da

3.3

A vulnerability was found in WebAssembly wabt up to 1.0.37 and classified as problematic. This issue affects the function LogOpcode of the file src/binary-reader-objdump.cc. The manipulation leads to reachable assertion. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used. The real existence of this vulnerability is still doubted at the moment. The code maintainer explains that this issue might not affect "real world wasm programs".

5.3

A vulnerability, which was classified as critical, has been found in HDF5 up to 1.14.6. Affected by this issue is the function H5FS__sect_find_node of the file H5FSsection.c. The manipulation leads to heap-based buffer overflow. It is possible to launch the attack on the local host. The exploit has been disclosed to the public and may be used.

2.3

A path transversal vulnerability in Brocade Fabric OS 9.1.0 through 9.2.2 could allow a local admin user to gain access to files outside the intended directory potentially leading to the disclosure of sensitive information. Note: Admin level privilege is required on the switch in order to exploit

7.1

A missing length check in `ogs_pfcp_dev_add` function from PFCP library, used by both smf and upf in open5gs 2.7.2 and earlier, allows a local attacker to cause a Buffer Overflow by changing the `session.dev` field with a value with length greater than 32.

7.1

In the Linux kernel, the following vulnerability has been resolved: tools/power turbostat: Fix file pointer leak Currently if a fscanf fails then an early return leaks an open file pointer. Fix this by fclosing the file before the return. Detected using static analysis with cppcheck: tools/power/x86/turbostat/turbostat.c:2039:3: error: Resource leak: fp [resourceLeak]

7.1

In the Linux kernel, the following vulnerability has been resolved: wifi: wil6210: debugfs: fix info leak in wil_write_file_wmi() The simple_write_to_buffer() function will succeed if even a single byte is initialized. However, we need to initialize the whole buffer to prevent information leaks. Just use memdup_user().

7.1

In the Linux kernel, the following vulnerability has been resolved: bpf, cgroup: Fix kernel BUG in purge_effective_progs Syzkaller reported a triggered kernel BUG as follows: ------------[ cut here ]------------ kernel BUG at kernel/bpf/cgroup.c:925! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 194 Comm: detach Not tainted 5.19.0-14184-g69dac8e431af #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__cgroup_bpf_detach+0x1f2/0x2a0 Code: 00 e8 92 60 30 00 84 c0 75 d8 4c 89 e0 31 f6 85 f6 74 19 42 f6 84 28 48 05 00 00 02 75 0e 48 8b 80 c0 00 00 00 48 85 c0 75 e5 <0f> 0b 48 8b 0c5 RSP: 0018:ffffc9000055bdb0 EFLAGS: 00000246 RAX: 0000000000000000 RBX: ffff888100ec0800 RCX: ffffc900000f1000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff888100ec4578 RBP: 0000000000000000 R08: ffff888100ec0800 R09: 0000000000000040 R10: 0000000000000000 R11: 0000000000000000 R12: ffff888100ec4000 R13: 000000000000000d R14: ffffc90000199000 R15: ffff888100effb00 FS: 00007f68213d2b80(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f74a0e5850 CR3: 0000000102836000 CR4: 00000000000006e0 Call Trace: <TASK> cgroup_bpf_prog_detach+0xcc/0x100 __sys_bpf+0x2273/0x2a00 __x64_sys_bpf+0x17/0x20 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f68214dbcb9 Code: 08 44 89 e0 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff8 RSP: 002b:00007ffeb487db68 EFLAGS: 00000246 ORIG_RAX: 0000000000000141 RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f68214dbcb9 RDX: 0000000000000090 RSI: 00007ffeb487db70 RDI: 0000000000000009 RBP: 0000000000000003 R08: 0000000000000012 R09: 0000000b00000003 R10: 00007ffeb487db70 R11: 0000000000000246 R12: 00007ffeb487dc20 R13: 0000000000000004 R14: 0000000000000001 R15: 000055f74a1011b0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- Repetition steps: For the following cgroup tree, root | cg1 | cg2 1. attach prog2 to cg2, and then attach prog1 to cg1, both bpf progs attach type is NONE or OVERRIDE. 2. write 1 to /proc/thread-self/fail-nth for failslab. 3. detach prog1 for cg1, and then kernel BUG occur. Failslab injection will cause kmalloc fail and fall back to purge_effective_progs. The problem is that cg2 have attached another prog, so when go through cg2 layer, iteration will add pos to 1, and subsequent operations will be skipped by the following condition, and cg will meet NULL in the end. `if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))` The NULL cg means no link or prog match, this is as expected, and it's not a bug. So here just skip the no match situation.

5.5

In the Linux kernel, the following vulnerability has been resolved: espintcp: fix skb leaks A few error paths are missing a kfree_skb.

7.0

In the Linux kernel, the following vulnerability has been resolved: smb: client: Fix use-after-free in cifs_fill_dirent There is a race condition in the readdir concurrency process, which may access the rsp buffer after it has been released, triggering the following KASAN warning. ================================================================== BUG: KASAN: slab-use-after-free in cifs_fill_dirent+0xb03/0xb60 [cifs] Read of size 4 at addr ffff8880099b819c by task a.out/342975 CPU: 2 UID: 0 PID: 342975 Comm: a.out Not tainted 6.15.0-rc6+ #240 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x53/0x70 print_report+0xce/0x640 kasan_report+0xb8/0xf0 cifs_fill_dirent+0xb03/0xb60 [cifs] cifs_readdir+0x12cb/0x3190 [cifs] iterate_dir+0x1a1/0x520 __x64_sys_getdents+0x134/0x220 do_syscall_64+0x4b/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f996f64b9f9 Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0d f7 c3 0c 00 f7 d8 64 89 8 RSP: 002b:00007f996f53de78 EFLAGS: 00000207 ORIG_RAX: 000000000000004e RAX: ffffffffffffffda RBX: 00007f996f53ecdc RCX: 00007f996f64b9f9 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007f996f53dea0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000207 R12: ffffffffffffff88 R13: 0000000000000000 R14: 00007ffc8cd9a500 R15: 00007f996f51e000 </TASK> Allocated by task 408: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x6e/0x70 kmem_cache_alloc_noprof+0x117/0x3d0 mempool_alloc_noprof+0xf2/0x2c0 cifs_buf_get+0x36/0x80 [cifs] allocate_buffers+0x1d2/0x330 [cifs] cifs_demultiplex_thread+0x22b/0x2690 [cifs] kthread+0x394/0x720 ret_from_fork+0x34/0x70 ret_from_fork_asm+0x1a/0x30 Freed by task 342979: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x37/0x50 kmem_cache_free+0x2b8/0x500 cifs_buf_release+0x3c/0x70 [cifs] cifs_readdir+0x1c97/0x3190 [cifs] iterate_dir+0x1a1/0x520 __x64_sys_getdents64+0x134/0x220 do_syscall_64+0x4b/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff8880099b8000 which belongs to the cache cifs_request of size 16588 The buggy address is located 412 bytes inside of freed 16588-byte region [ffff8880099b8000, ffff8880099bc0cc) The buggy address belongs to the physical page: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99b8 head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 anon flags: 0x80000000000040(head|node=0|zone=1) page_type: f5(slab) raw: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001 raw: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000 head: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001 head: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000 head: 0080000000000003 ffffea0000266e01 00000000ffffffff 00000000ffffffff head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000008 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880099b8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880099b8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880099b8180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880099b8200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880099b8280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== POC is available in the link [1]. The problem triggering process is as follows: Process 1 Process 2 ----------------------------------- ---truncated---

7.8

In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Fix "KASAN: slab-use-after-free Read in ib_register_device" problem Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xc3/0x670 mm/kasan/report.c:521 kasan_report+0xe0/0x110 mm/kasan/report.c:634 strlen+0x93/0xa0 lib/string.c:420 __fortify_strlen include/linux/fortify-string.h:268 [inline] get_kobj_path_length lib/kobject.c:118 [inline] kobject_get_path+0x3f/0x2a0 lib/kobject.c:158 kobject_uevent_env+0x289/0x1870 lib/kobject_uevent.c:545 ib_register_device drivers/infiniband/core/device.c:1472 [inline] ib_register_device+0x8cf/0xe00 drivers/infiniband/core/device.c:1393 rxe_register_device+0x275/0x320 drivers/infiniband/sw/rxe/rxe_verbs.c:1552 rxe_net_add+0x8e/0xe0 drivers/infiniband/sw/rxe/rxe_net.c:550 rxe_newlink+0x70/0x190 drivers/infiniband/sw/rxe/rxe.c:225 nldev_newlink+0x3a3/0x680 drivers/infiniband/core/nldev.c:1796 rdma_nl_rcv_msg+0x387/0x6e0 drivers/infiniband/core/netlink.c:195 rdma_nl_rcv_skb.constprop.0.isra.0+0x2e5/0x450 netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline] netlink_unicast+0x53a/0x7f0 net/netlink/af_netlink.c:1339 netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1883 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg net/socket.c:727 [inline] ____sys_sendmsg+0xa95/0xc70 net/socket.c:2566 ___sys_sendmsg+0x134/0x1d0 net/socket.c:2620 __sys_sendmsg+0x16d/0x220 net/socket.c:2652 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f This problem is similar to the problem that the commit 1d6a9e7449e2 ("RDMA/core: Fix use-after-free when rename device name") fixes. The root cause is: the function ib_device_rename() renames the name with lock. But in the function kobject_uevent(), this name is accessed without lock protection at the same time. The solution is to add the lock protection when this name is accessed in the function kobject_uevent().

5.5

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: csa unmap use uninterruptible lock After process exit to unmap csa and free GPU vm, if signal is accepted and then waiting to take vm lock is interrupted and return, it causes memory leaking and below warning backtrace. Change to use uninterruptible wait lock fix the issue. WARNING: CPU: 69 PID: 167800 at amd/amdgpu/amdgpu_kms.c:1525 amdgpu_driver_postclose_kms+0x294/0x2a0 [amdgpu] Call Trace: <TASK> drm_file_free.part.0+0x1da/0x230 [drm] drm_close_helper.isra.0+0x65/0x70 [drm] drm_release+0x6a/0x120 [drm] amdgpu_drm_release+0x51/0x60 [amdgpu] __fput+0x9f/0x280 ____fput+0xe/0x20 task_work_run+0x67/0xa0 do_exit+0x217/0x3c0 do_group_exit+0x3b/0xb0 get_signal+0x14a/0x8d0 arch_do_signal_or_restart+0xde/0x100 exit_to_user_mode_loop+0xc1/0x1a0 exit_to_user_mode_prepare+0xf4/0x100 syscall_exit_to_user_mode+0x17/0x40 do_syscall_64+0x69/0xc0 (cherry picked from commit 7dbbfb3c171a6f63b01165958629c9c26abf38ab)

5.5

In the Linux kernel, the following vulnerability has been resolved: HID: uclogic: Add NULL check in uclogic_input_configured() devm_kasprintf() returns NULL when memory allocation fails. Currently, uclogic_input_configured() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue.

7.8

A flaw was found in linux-pam. The module pam_namespace may use access user-controlled paths without proper protection, allowing local users to elevate their privileges to root via multiple symlink attacks and race conditions.

3.5

A vulnerability was found in frdel Agent-Zero up to 0.8.4. It has been rated as problematic. This issue affects the function image_get of the file /python/api/image_get.py. The manipulation of the argument path leads to path traversal. Upgrading to version 0.8.4.1 is able to address this issue. The identifier of the patch is 5db74202d632306a883ccce7339c5bdba0d16c5a. It is recommended to upgrade the affected component.

9.1

A vulnerability was found in libxml2. Processing certain sch:name elements from the input XML file can trigger a memory corruption issue. This flaw allows an attacker to craft a malicious XML input file that can lead libxml to crash, resulting in a denial of service or other possible undefined behavior due to sensitive data being corrupted in memory.

9.1

A use-after-free vulnerability was found in libxml2. This issue occurs when parsing XPath elements under certain circumstances when the XML schematron has the <sch:name path="..."/> schema elements. This flaw allows a malicious actor to craft a malicious XML document used as input for libxml, resulting in the program's crash using libxml or other possible undefined behaviors.

9.8

A vulnerability was found in UTT 进取 750W up to 5.0. It has been classified as critical. This affects the function strcpy of the file /goform/setSysAdm of the component API. The manipulation of the argument passwd1 leads to buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.

5.3

A vulnerability was found in UTT 进取 750W up to 5.0 and classified as critical. Affected by this issue is the function formDefineManagement of the file /goform/setSysAdm of the component Administrator Password Handler. The manipulation of the argument passwd1 leads to unverified password change. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.

4.3

A vulnerability has been found in Astun Technology iShare Maps 5.4.0 and classified as problematic. This vulnerability affects unknown code of the file atCheckJS.aspx. The manipulation of the argument ref leads to open redirect. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.

4.3

In ExtremeCloud Universal ZTNA, a syntax error in the 'searchKeyword' condition caused queries to bypass the owner_id filter. This issue may allow users to search data across the entire table instead of being restricted to their specific owner_id.

6.1

A flaw was found in GIMP. An integer overflow vulnerability exists in the GIMP "Despeckle" plug-in. The issue occurs due to unchecked multiplication of image dimensions, such as width, height, and bytes-per-pixel (img_bpp), which can result in allocating insufficient memory and subsequently performing out-of-bounds writes. This issue could lead to heap corruption, a potential denial of service (DoS), or arbitrary code execution in certain scenarios.

7.8

Dell iDRAC Tools, version(s) prior to 11.3.0.0, contain(s) an Improper Access Control vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Elevation of privileges.

7.1

Dell Smart Dock Firmware, versions prior to 01.00.08.01, contain an Insertion of Sensitive Information into Log File vulnerability. A user with local access could potentially exploit this vulnerability, leading to Information disclosure.

Showing 9251-9275 of 10,360 CVEs