CVE Tracker
10,122 total CVEsLive vulnerability feed from the National Vulnerability Database
n8n is an open source workflow automation platform. From version 1.65.0 to before 1.114.3, the use of Buffer.allocUnsafe() and Buffer.allocUnsafeSlow() in the task runner allowed untrusted code to allocate uninitialized memory. Such uninitialized buffers could contain residual data from within the same Node.js process (for example, data from prior requests, tasks, secrets, or tokens), resulting in potential information disclosure. This issue has been patched in version 1.114.3.
In the Linux kernel, the following vulnerability has been resolved: udp: call skb_orphan() before skb_attempt_defer_free() Standard UDP receive path does not use skb->destructor. But skmsg layer does use it, since it calls skb_set_owner_sk_safe() from udp_read_skb(). This then triggers this warning in skb_attempt_defer_free(): DEBUG_NET_WARN_ON_ONCE(skb->destructor); We must call skb_orphan() to fix this issue.
In the Linux kernel, the following vulnerability has been resolved: libceph: make calc_target() set t->paused, not just clear it Currently calc_target() clears t->paused if the request shouldn't be paused anymore, but doesn't ever set t->paused even though it's able to determine when the request should be paused. Setting t->paused is left to __submit_request() which is fine for regular requests but doesn't work for linger requests -- since __submit_request() doesn't operate on linger requests, there is nowhere for lreq->t.paused to be set. One consequence of this is that watches don't get reestablished on paused -> unpaused transitions in cases where requests have been paused long enough for the (paused) unwatch request to time out and for the subsequent (re)watch request to enter the paused state. On top of the watch not getting reestablished, rbd_reregister_watch() gets stuck with rbd_dev->watch_mutex held: rbd_register_watch __rbd_register_watch ceph_osdc_watch linger_reg_commit_wait It's waiting for lreq->reg_commit_wait to be completed, but for that to happen the respective request needs to end up on need_resend_linger list and be kicked when requests are unpaused. There is no chance for that if the request in question is never marked paused in the first place. The fact that rbd_dev->watch_mutex remains taken out forever then prevents the image from getting unmapped -- "rbd unmap" would inevitably hang in D state on an attempt to grab the mutex.
In the Linux kernel, the following vulnerability has been resolved: virtio_net: fix device mismatch in devm_kzalloc/devm_kfree Initial rss_hdr allocation uses virtio_device->device, but virtnet_set_queues() frees using net_device->device. This device mismatch causing below devres warning [ 3788.514041] ------------[ cut here ]------------ [ 3788.514044] WARNING: drivers/base/devres.c:1095 at devm_kfree+0x84/0x98, CPU#16: vdpa/1463 [ 3788.514054] Modules linked in: octep_vdpa virtio_net virtio_vdpa [last unloaded: virtio_vdpa] [ 3788.514064] CPU: 16 UID: 0 PID: 1463 Comm: vdpa Tainted: G W 6.18.0 #10 PREEMPT [ 3788.514067] Tainted: [W]=WARN [ 3788.514069] Hardware name: Marvell CN106XX board (DT) [ 3788.514071] pstate: 63400009 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) [ 3788.514074] pc : devm_kfree+0x84/0x98 [ 3788.514076] lr : devm_kfree+0x54/0x98 [ 3788.514079] sp : ffff800084e2f220 [ 3788.514080] x29: ffff800084e2f220 x28: ffff0003b2366000 x27: 000000000000003f [ 3788.514085] x26: 000000000000003f x25: ffff000106f17c10 x24: 0000000000000080 [ 3788.514089] x23: ffff00045bb8ab08 x22: ffff00045bb8a000 x21: 0000000000000018 [ 3788.514093] x20: ffff0004355c3080 x19: ffff00045bb8aa00 x18: 0000000000080000 [ 3788.514098] x17: 0000000000000040 x16: 000000000000001f x15: 000000000007ffff [ 3788.514102] x14: 0000000000000488 x13: 0000000000000005 x12: 00000000000fffff [ 3788.514106] x11: ffffffffffffffff x10: 0000000000000005 x9 : ffff800080c8c05c [ 3788.514110] x8 : ffff800084e2eeb8 x7 : 0000000000000000 x6 : 000000000000003f [ 3788.514115] x5 : ffff8000831bafe0 x4 : ffff800080c8b010 x3 : ffff0004355c3080 [ 3788.514119] x2 : ffff0004355c3080 x1 : 0000000000000000 x0 : 0000000000000000 [ 3788.514123] Call trace: [ 3788.514125] devm_kfree+0x84/0x98 (P) [ 3788.514129] virtnet_set_queues+0x134/0x2e8 [virtio_net] [ 3788.514135] virtnet_probe+0x9c0/0xe00 [virtio_net] [ 3788.514139] virtio_dev_probe+0x1e0/0x338 [ 3788.514144] really_probe+0xc8/0x3a0 [ 3788.514149] __driver_probe_device+0x84/0x170 [ 3788.514152] driver_probe_device+0x44/0x120 [ 3788.514155] __device_attach_driver+0xc4/0x168 [ 3788.514158] bus_for_each_drv+0x8c/0xf0 [ 3788.514161] __device_attach+0xa4/0x1c0 [ 3788.514164] device_initial_probe+0x1c/0x30 [ 3788.514168] bus_probe_device+0xb4/0xc0 [ 3788.514170] device_add+0x614/0x828 [ 3788.514173] register_virtio_device+0x214/0x258 [ 3788.514175] virtio_vdpa_probe+0xa0/0x110 [virtio_vdpa] [ 3788.514179] vdpa_dev_probe+0xa8/0xd8 [ 3788.514183] really_probe+0xc8/0x3a0 [ 3788.514186] __driver_probe_device+0x84/0x170 [ 3788.514189] driver_probe_device+0x44/0x120 [ 3788.514192] __device_attach_driver+0xc4/0x168 [ 3788.514195] bus_for_each_drv+0x8c/0xf0 [ 3788.514197] __device_attach+0xa4/0x1c0 [ 3788.514200] device_initial_probe+0x1c/0x30 [ 3788.514203] bus_probe_device+0xb4/0xc0 [ 3788.514206] device_add+0x614/0x828 [ 3788.514209] _vdpa_register_device+0x58/0x88 [ 3788.514211] octep_vdpa_dev_add+0x104/0x228 [octep_vdpa] [ 3788.514215] vdpa_nl_cmd_dev_add_set_doit+0x2d0/0x3c0 [ 3788.514218] genl_family_rcv_msg_doit+0xe4/0x158 [ 3788.514222] genl_rcv_msg+0x218/0x298 [ 3788.514225] netlink_rcv_skb+0x64/0x138 [ 3788.514229] genl_rcv+0x40/0x60 [ 3788.514233] netlink_unicast+0x32c/0x3b0 [ 3788.514237] netlink_sendmsg+0x170/0x3b8 [ 3788.514241] __sys_sendto+0x12c/0x1c0 [ 3788.514246] __arm64_sys_sendto+0x30/0x48 [ 3788.514249] invoke_syscall.constprop.0+0x58/0xf8 [ 3788.514255] do_el0_svc+0x48/0xd0 [ 3788.514259] el0_svc+0x48/0x210 [ 3788.514264] el0t_64_sync_handler+0xa0/0xe8 [ 3788.514268] el0t_64_sync+0x198/0x1a0 [ 3788.514271] ---[ end trace 0000000000000000 ]--- Fix by using virtio_device->device consistently for allocation and deallocation
In the Linux kernel, the following vulnerability has been resolved: net/ena: fix missing lock when update devlink params Fix assert lock warning while calling devl_param_driverinit_value_set() in ena. WARNING: net/devlink/core.c:261 at devl_assert_locked+0x62/0x90, CPU#0: kworker/0:0/9 CPU: 0 UID: 0 PID: 9 Comm: kworker/0:0 Not tainted 6.19.0-rc2+ #1 PREEMPT(lazy) Hardware name: Amazon EC2 m8i-flex.4xlarge/, BIOS 1.0 10/16/2017 Workqueue: events work_for_cpu_fn RIP: 0010:devl_assert_locked+0x62/0x90 Call Trace: <TASK> devl_param_driverinit_value_set+0x15/0x1c0 ena_devlink_alloc+0x18c/0x220 [ena] ? __pfx_ena_devlink_alloc+0x10/0x10 [ena] ? trace_hardirqs_on+0x18/0x140 ? lockdep_hardirqs_on+0x8c/0x130 ? __raw_spin_unlock_irqrestore+0x5d/0x80 ? __raw_spin_unlock_irqrestore+0x46/0x80 ? devm_ioremap_wc+0x9a/0xd0 ena_probe+0x4d2/0x1b20 [ena] ? __lock_acquire+0x56a/0xbd0 ? __pfx_ena_probe+0x10/0x10 [ena] ? local_clock+0x15/0x30 ? __lock_release.isra.0+0x1c9/0x340 ? mark_held_locks+0x40/0x70 ? lockdep_hardirqs_on_prepare.part.0+0x92/0x170 ? trace_hardirqs_on+0x18/0x140 ? lockdep_hardirqs_on+0x8c/0x130 ? __raw_spin_unlock_irqrestore+0x5d/0x80 ? __raw_spin_unlock_irqrestore+0x46/0x80 ? __pfx_ena_probe+0x10/0x10 [ena] ...... </TASK>
In the Linux kernel, the following vulnerability has been resolved: PM: hibernate: Fix crash when freeing invalid crypto compressor When crypto_alloc_acomp() fails, it returns an ERR_PTR value, not NULL. The cleanup code in save_compressed_image() and load_compressed_image() unconditionally calls crypto_free_acomp() without checking for ERR_PTR, which causes crypto_acomp_tfm() to dereference an invalid pointer and crash the kernel. This can be triggered when the compression algorithm is unavailable (e.g., CONFIG_CRYPTO_LZO not enabled). Fix by adding IS_ERR_OR_NULL() checks before calling crypto_free_acomp() and acomp_request_free(), similar to the existing kthread_stop() check. [ rjw: Added 2 empty code lines ]
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix NULL pointer dereference in do_abort_log_replay() Coverity reported a NULL pointer dereference issue (CID 1666756) in do_abort_log_replay(). When btrfs_alloc_path() fails in replay_one_buffer(), wc->subvol_path is NULL, but btrfs_abort_log_replay() calls do_abort_log_replay() which unconditionally dereferences wc->subvol_path when attempting to print debug information. Fix this by adding a NULL check before dereferencing wc->subvol_path in do_abort_log_replay().
In the Linux kernel, the following vulnerability has been resolved: idpf: fix aux device unplugging when rdma is not supported by vport If vport flags do not contain VIRTCHNL2_VPORT_ENABLE_RDMA, driver does not allocate vdev_info for this vport. This leads to kernel NULL pointer dereference in idpf_idc_vport_dev_down(), which references vdev_info for every vport regardless. Check, if vdev_info was ever allocated before unplugging aux device.
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix NULL pointer crash in bnxt_ptp_enable during error cleanup When bnxt_init_one() fails during initialization (e.g., bnxt_init_int_mode returns -ENODEV), the error path calls bnxt_free_hwrm_resources() which destroys the DMA pool and sets bp->hwrm_dma_pool to NULL. Subsequently, bnxt_ptp_clear() is called, which invokes ptp_clock_unregister(). Since commit a60fc3294a37 ("ptp: rework ptp_clock_unregister() to disable events"), ptp_clock_unregister() now calls ptp_disable_all_events(), which in turn invokes the driver's .enable() callback (bnxt_ptp_enable()) to disable PTP events before completing the unregistration. bnxt_ptp_enable() attempts to send HWRM commands via bnxt_ptp_cfg_pin() and bnxt_ptp_cfg_event(), both of which call hwrm_req_init(). This function tries to allocate from bp->hwrm_dma_pool, causing a NULL pointer dereference: bnxt_en 0000:01:00.0 (unnamed net_device) (uninitialized): bnxt_init_int_mode err: ffffffed KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f] Call Trace: __hwrm_req_init (drivers/net/ethernet/broadcom/bnxt/bnxt_hwrm.c:72) bnxt_ptp_enable (drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.c:323 drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.c:517) ptp_disable_all_events (drivers/ptp/ptp_chardev.c:66) ptp_clock_unregister (drivers/ptp/ptp_clock.c:518) bnxt_ptp_clear (drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.c:1134) bnxt_init_one (drivers/net/ethernet/broadcom/bnxt/bnxt.c:16889) Lines are against commit f8f9c1f4d0c7 ("Linux 6.19-rc3") Fix this by clearing and unregistering ptp (bnxt_ptp_clear()) before freeing HWRM resources.
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211_hwsim: fix typo in frequency notification The NAN notification is for 5745 MHz which corresponds to channel 149 and not 5475 which is not actually a valid channel. This could result in a NULL pointer dereference in cfg80211_next_nan_dw_notif.
A vulnerability exists in F5 BIG-IP Container Ingress Services that may allow excessive permissions to read cluster secrets. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
In the Linux kernel, the following vulnerability has been resolved: ALSA: ac97: fix a double free in snd_ac97_controller_register() If ac97_add_adapter() fails, put_device() is the correct way to drop the device reference. kfree() is not required. Add kfree() if idr_alloc() fails and in ac97_adapter_release() to do the cleanup. Found by code review.
A stored cross-site scripting (XSS) vulnerability exists in the web management interface of the PPC (Belden) ONT 2K05X router running firmware v1.1.9_206L. The Common Gateway Interface (CGI) component improperly handles user-supplied input, allowing a remote, unauthenticated attacker to inject arbitrary JavaScript that is persistently stored and executed when the affected interface is accessed.
When a BIG-IP Advanced WAF or ASM security policy is configured on a virtual server, undisclosed requests along with conditions beyond the attacker's control can cause the bd process to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
A vulnerability exists in an undisclosed BIG-IP Configuration utility page that may allow an attacker to spoof error messages. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
A vulnerability exists in BIG-IP Edge Client and browser VPN clients on Windows that may allow attackers to gain access to sensitive information. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated
A vulnerability exists in NGINX OSS and NGINX Plus when configured to proxy to upstream Transport Layer Security (TLS) servers. An attacker with a man-in-the-middle (MITM) position on the upstream server side—along with conditions beyond the attacker's control—may be able to inject plain text data into the response from an upstream proxied server. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
A vulnerability has been discovered in eladmin v2.7 and before. This vulnerability allows for an arbitrary user password reset under any user permission level.
An arbitrary file overwrite vulnerability in the file import process of Tarot, Astro & Healing v11.4.0 allows attackers to overwrite critical internal files, potentially leading to arbitrary code execution or exposure of sensitive information.
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Martcode Software Inc. Delta Course Automation allows SQL Injection.This issue affects Delta Course Automation: through 04022026. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
The SportsPress plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 2.7.26 via shortcodes 'template_name' attribute. This makes it possible for authenticated attackers, with contributor-level and above permissions, to include and execute arbitrary files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where php file type can be uploaded and included.
Docker Desktop for Windows contains multiple incorrect permission assignment vulnerabilities in the installer's handling of the C:\ProgramData\DockerDesktop directory. The installer creates this directory without proper ownership verification, creating two exploitation scenarios: Scenario 1 (Persistent Attack): If a low-privileged attacker pre-creates C:\ProgramData\DockerDesktop before Docker Desktop installation, the attacker retains ownership of the directory even after the installer applies restrictive ACLs. At any time after installation completes, the attacker can modify the directory ACL (as the owner) and tamper with critical configuration files such as install-settings.json to specify a malicious credentialHelper, causing arbitrary code execution when any user runs Docker Desktop. Scenario 2 (TOCTOU Attack): During installation, there is a time-of-check-time-of-use (TOCTOU) race condition between when the installer creates C:\ProgramData\DockerDesktop and when it sets secure ACLs. A low-privileged attacker actively monitoring for the installation can inject malicious files (such as install-settings.json) with attacker-controlled ACLs during this window, achieving the same code execution outcome.
Exposure of Private Personal Information to an Unauthorized Actor vulnerability in Apache Answer. This issue affects Apache Answer: through 1.7.1. An unauthenticated API endpoint incorrectly exposes full revision history for deleted content. This allows unauthorized user to retrieve restricted or sensitive information. Users are recommended to upgrade to version 2.0.0, which fixes the issue.
On a Cryptobox platform where administrator segregation based on entities is used, some vulnerabilities in Ercom Cryptobox administration console allows an authenticated entity administrator with knowledge to elevate his account to global administrator.
This vulnerability allows authenticated attackers to execute arbitrary commands on the underlying system using the file name of an uploaded file.
Showing 376-400 of 10,122 CVEs